Glass-clad single-crystal germanium optical fiber.

نویسندگان

  • J Ballato
  • T Hawkins
  • P Foy
  • B Yazgan-Kokuoz
  • R Stolen
  • C McMillen
  • N K Hon
  • B Jalali
  • R Rice
چکیده

Long lengths (250 meters) of a flexible 150 microm diameter glass-clad optical fiber containing a 15 microm diameter crystalline and phase-pure germanium core was fabricated using conventional optical fiber draw techniques. X-ray diffraction and spontaneous Raman scattering measurements showed the core to be very highly crystalline germanium with no observed secondary phases. Elemental analysis confirmed a very well-defined core-clad interface with a step-profile in composition and nominally 4 weight-percent oxygen having diffused into the germanium core from the glass cladding. For this proof-of-concept fiber, polycrystalline n-type germanium of unknown dopant concentration was used. The measured infrared transparency of the starting material was poor and, as a likely outcome, the attenuation of the resultant fiber was too high to be measured. However, the larger Raman cross-section, infrared and terahertz transparency of germanium over silicon should make these fibers of significant value for fiber-based mid- to long-wave infrared and terahertz waveguides and Raman-shifted infrared light sources once high-purity, high-resistivity germanium is employed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cascaded Control for Regulating Soot Geometry in Vapor-phase Axial Deposition

The development of a cascaded feedback control strategy for a vapor-phase axial deposition (VAD) process is investigated in this paper. VAD is a widely used process in the creation of high purity glass for optical fiber. In previous work a soot tip surface temperature controller was developed for the VAD process to reduce the effects of core soot temperature variation on deposition, leading to ...

متن کامل

Isfa 2008 U _ 108 Axial Deposition Control in Vapor - Phase Axial Deposition

An advanced feedback control strategy for a vapor-phase axial deposition (VAD) is investigated in this paper. VAD is a widely used process in the creation of high purity glass for optical fiber. In previous work a soot tip surface temperature controller was developed for the VAD process to reduce the effects of core soot temperature variation on deposition geometry, leading to a more stable pro...

متن کامل

Silica-clad crystalline germanium core optical fibers.

Silica-clad optical fibers comprising a core of crystalline germanium were drawn using a molten core technique. With respect to previous fibers drawn using a borosilicate cladding, the present fibers exhibit negligible oxygen despite being fabricated at more than twice the melting point of the germanium. The counterintuitive result of less oxygen when the fiber is drawn at a higher temperatures...

متن کامل

Reduction of self-phase modulation in double-clad photonic crystal fiber for nonlinear optical endoscopy.

Double-clad photonic crystal fiber and double-clad fiber have been widely used in multiphoton-excited fluorescence or second-harmonic generation (SHG) endoscopy. We provide a useful comparison of two fibers used in nonlinear optical microendoscopy. While a double-clad fiber is found to have a higher percentage of the output power from its core, which results in the efficient utilization of the ...

متن کامل

Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation.

We report about a new type of nonlinear photonic crystal fibers allowing broadband four-wave mixing and supercontinuum generation. The microstructured optical fiber has a structured core consisting of a rod of highly nonlinear glass material inserted in a silica tube. This particular structure enables four wave mixing processes with very large frequency detuning (>135 THz), which permitted the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 17 10  شماره 

صفحات  -

تاریخ انتشار 2009